on pediatric eczema: will my baby have it?

adorable baby beautiful bed
Photo by Pixabay on Pexels.com

This is a crossover post from my personal blog.

A while back I wrote a post about what it’s like to have eczema and be pregnant, followed by another post after my little one was born all about living life with eczema and a baby. But today’s topic isn’t about the mom, but rather, about the baby and the baby’s risk of inheriting eczema from his/her parents.

The inspiration for this post comes from the eczema community on instagram. Many ladies have been asking about this topic, so I figured I would try to search for an answer. I apologize if it isn’t the clearest of posts. It’s a culmination of a bunch of witching hour moments over a few days, when Fiona decided that midnight, 1am, 2am, 3am, etc are equally important times to wake up each day.

Most of us know that there is a genetic component to eczema but what does that actually mean? There are a few different ideas being studied about where genes come into play with this condition that are lumped under the “outside-inside model” which look at skin barrier dysfunction (as opposed to the “inside-outside model”, which is about the gut health). Some examples of the outside-inside model, which I’ll go over individually, include:

  • FLG (a gene, that makes the protein filaggrin). I mentioned this protein in an older post on my personal blog, talking about how there were treatments for eczema being developed that made use of it. The gist was that a loss-of-function in the specific gene results in less filaggrin being made, and filaggrin is an essential player in keeping the skin barrier intact.
  • Tmem79/Matt (colloquially known the Matted mutant gene, so named because in mice it results in their fur having a matted look). Researchers found that mice that had this mutant MATT gene also had skin barrier issues and dermatitis issues, and that humans had a similar gene with a common single nucleotide polymorphisms (or SNP). When there is a misstep (or a mistake) in humans’ SNP, there are significant atopic dermatitis associations.
  • Th2 (a cytokine, or a protein that impacts cell signaling). Th stands for T helper cells, and they help with host defense, but also impact inflammation. Some, like Th2 are know for being (pro)inflammatory, while Th1 is known to be anti-inflammatory. I mentioned this a little when talking about pregnancy and eczema. Research from 2015 showed there are many different Th types, that all may have their own impact on inflammation.
  • interleukin-1 (a protein from a family of inflammatory and regulatory cytokines). Many studies are still showing that breastfeeding reduces your child’s risk of eczema, because of some components (interleukin-beta specifically) in the breast milk that the child consumes. One such study went so far as to say that breastfeeding halves the risk for children between 0 and 3 years of age (and no you don’t have to breastfeed for 3 years for that to be the case!). The way interleukins work is that they are released when there are bacteria or immunological disturbances. The interleukins show up and affect cells like capillary endothelial ones, making them release chemicals and attract monocytes (large white blood cells that help kill bacteria). The problem with certain types of interleukins is that they can be associated with Th2 (or Th-22, which is made by IL-22), or they can be known to be associated with inflammatory diseases like IL-17.

Then there has been a lot of research investigating if and how probiotics can help prevent eczema for babies too, and even Gerber makes probiotic-included products now. In particular, Lactobacillus rhamnosus was seen to have mixed results, with some studies showing it reduced genetic susceptibility to eczema (meaning it somehow calms the baby’s risk of having eczema) for children with thirty-three eczema susceptibility SNPs. On the flip side, other studies said Lactobacillus rhamnosus had no effect on reducing the child’s risk of eczema.

To be honest, I am still a bit skeptical of the studies done that show no effect because, from what I can tell, they have the parents give the babies probiotics for say 6 months, and then check back in when the child is 2 years old or so to see if there is a benefit. If a modern western diet (high carb, especially in refined sugars) can alter an adult’s gut microbiome fairly rapidly, why would the probiotics a baby takes at 6 months still be helping the gut at 2 years (the biome diversity would have changed due to diet by then, and the gut must stay healthy for it to help the skin)? Wouldn’t one expect the gut microbiome diversity to change and said “good” gut bacteria to not be able to survive the environment anymore?

I still think, as the studies show no negative effects, what would be the harm in giving your baby probiotics (after consulting with your baby’s pediatrician of course)? That and also making sure to keep your baby on a diet that creates a gut environment more conducive to good bacteria flourishing.

Also note, I wasn’t able to access the whole study so I’m not sure how the probiotics were administered unfortunately. On a tangent, that’s always a frustrating point to me. I don’t think studies should cost the public to access because we should want to encourage people furthering their health in any way possible. I understand scientists need to make money too but I do wish there was another way besides charging subscriptions to databases of research. 

But I digress. So what is the takeaway for all those future mamas worrying about passing eczema on to their children? Do they have cause for concern? Perhaps. The way I see it (noting I could be interpreting this incorrectly) is for:

  • filaggrin: If the loss of function filaggrin gene is passed on, the child would probably have an increased risk.
  • Th2: the Th1/Th2 dominance seems to be more dependent on estrogen than genetics (though I could be wrong) so my guess would be that having a girl would make her more susceptible in that case (again, I definitely could be wrong).
  • MATT gene: The atopic dermatitis shows up is because of that misstep (mistake) in the common SNP of the gene. As a result I think the answer is yes, it probably is a risk for one’s children, because missteps (I believe) would be passed down since they are mutations.
  • interleukins: I believe the pro-inflammatory ones that are problematic are a product more so of consistent stressors on the body (both from invaders like bacteria, and from literal stress). If the baby/child is relatively healthy and isn’t too stressed out, in tandem maybe with the mom breastfeeding her baby (so long as she is able to, aka isn’t on chemotherapy or radiation or something), then I do think the risk of eczema from this perspective, is decreased.

But the real question now is how do all these components balance out in an individual, in a baby? Does having a loss of function filaggrin gene guarantee a lifetime of eczema? Or does it just make you more susceptible but you are fine if you don’t have the MATT gene’s SNP misstep (or one of the other 33 SNPs mentioned that are related to eczema susceptibility)? It would be interesting to see a study done that investigates all these components together, so we could know which are still present when you have people with severe eczema, topical steroid withdrawal systems, etc. As for the initial question, sure, there are genetic components that you pass down to your baby, but it seems like not all the heavy hitters are genetic so your baby may still be fine.

One more thing to leave you with: the American Academy of Dermatology made a post a while back saying a few ways to reduce your baby’s chance of eczema (not referring to genetics naturally), which included:

  • having a dog at home before the child’s 1st birthday
  • moisturizing a newborn’s skin
  • not eliminating a bunch of things in your diet
  • eating a healthy diet while pregnant, and
  • breastfeeding (and having a healthy diet while breastfeeding too).

All in all, know this: if you do have a baby and he/she has eczema, the research body is growing in the field and more understanding of what causes eczema are coming to light, which means better ways to treat it will follow.

 

 

REFERENCES

Bauer SM. Atopic Eczema: Genetic Associations and Potential Links to Development Exposures. International Journal of Toxicology. 2017 Mar 30: 36(3): 187-198.

Cabana MD, McKean M, Caughey AB, Fong L, Lynch S, Wong A, Leong R, Boushey HA, Hilton JF. Early Probiotic Supplementation for Eczema and Asthma Prevention: A Randomized Controlled Trial. Pediatrics. 2017 Sep; 140(3).

“Can anything prevent my child from getting eczema?” America Academy of Dermatology, https://www.aad.org/public/diseases/eczema/prevent-my-child-from-getting-eczema. Accessed 9 Jan 2019.

Hofmann A, Kiecker F, Zuberbier T. A systematic review of the role of interleukin-17 and the interleukin-20 family in inflammatory allergic skin diseases. Current Opinion in Allergy and Clinical Immunology. 2016 Oct; 16(5): 451-457.

“Interleukin 1.” R&D Systems 1999, https://www.rndsystems.com/resources/articles/interleukin-1. Accessed 18 Dec 2018.

Jepsen AA, Chawes BL, Carson CG, Schoos A-MM, Thysen AH, Waage J, Brix S, Bisgaard H. High breast milk IL-beta level is associated with reduced risk of childhood eczema. Clinical & Experimental Allergy. 2016 Jun 2; 46(10): 1344-1354.

McLean WHI. Filaggrin failure – from ichthyosis vulgaris to atopic eczema and beyond. Britist Journal of Dermatology. 2016 Sept 26; 175(52): 4-7.

Morgan AR, Han DY, Wickens K, Barthow C, Mitchell EA, Stanley TV, Dekker J, Crane J, Ferguson LR. Differential modification of genetic susceptibility to childhood eczema by two probiotics. 2014 Aug 21; 44(10): 1255-1265.

Raphael I, Nalawade S, Eagar TN, Forsthuber TG. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine. 2015 July; 74(1): 5-17.

Saunders SP, Goh CSM, Brown SJ, Palmer CNA, Porter RM, Cole C, Campbell LE, Gierlinski M, Barton GJ, Schneider G, Balmain A, Prescott AR, Weidinger S, Baurecht H, Kabesch M, Gieger C, Lee Y, Tavendale R, Mukhopadhyay S, Turner SW, Madhok VB, Sullivan FM, Relton C, Burn J, Meggitt S, Smith CH, Allen MA, Barker JNWN, Reynolds NJ, Cordell HJ, Irvine AD, McLean WHI, Sandilands A, Fallon PG. Tmem79/Matt is the matted mouse gene and is a predisposing gene for atopic dermatitis in huma subjects. J Allergy Clin Immunol. 2013 Nov; 132 (5): 1121-1129.

on breastfeeding, breastmilk, and NPR

woman in green shirt holding baby while sitting
Photo by Daria Shevtsova on Pexels.com

A while back I took a class on breastfeeding at the hospital where I planned to deliver (North Shore Medical Center Salem Hospital). Below I’ve outlined some of the notes I took as they pertain to women’s health, as well as my own thoughts.

As many people are saying, “breast is best”, it’s interesting to look into why. Studies have shown breast feeding can help women lose some of the pregnancy weight faster as you are expelling energy to produce milk. It can also help reduce your risks of ovarian cancer, breast cancer, heart disease, and type 2 diabetes, as well as it releases hormones to calm you down.

But what’s actually going on in the body when it produces milk? The glands that produce milk (alveoli) send the milk to ducts which lead to the nipple opening. The baby draws the milk out when sucking, and the more the baby drinks, the more our breasts produce. At first we only produce colostrum, which is this fatty liquid that has all kinds of goodies like antibodies and beta carotene for our babies newly-developing immune system and gut. Then the real milk comes in after about 3-5 days. When a baby started nursing each time, first (s)he will get the foremilk which is mostly composed of water, and after feeding for a few minutes (up to 10 minutes) the hindmilk (which is a lot fattier) follows. The Letdown Reflex happens each time the baby feeds and it is when the baby has latched and the breasts transition from letting out foremilk to hindmilk. Some women can feel the letdown reflex happening (described as pins and needles or some localized tightness) but many women feel nothing.

But how does breastfeeding feel? Well, apparently it is a very novel sensation to most when the baby first latches (it definitely was in my experience) and for many it is difficult to get a good latch and takes some practice! The biggest worry is that a baby who has latched poorly and is just hooked onto your nipple and so (s)he will cause the mom pain. The way to avoid this is to make sure the baby gets more of the areola in its mouth rather than just the nipple. To detach a baby from your nipple if they are incorrectly latched, you definitely don’t want to just pull them off (ouch), but instead you should insert a clean finger into their mouth to break the suction, by running your finger along their gum line.

Also leaking is normal, especially at the beginning of breastfeeding, but it usually does slow down and stop as you continue breastfeeding and your baby gets used to it. You can use nursing pads and also press your nipple/cross your arms when you feel like you are leaking to help to try and stop it.

What about your diet; how does it affect the breastmilk? What can you eat? From this class I was told you can eat and drink anything, it’s just a matter of seeing what your baby’s reaction is (if they get gassy, fussy, hiccup-y, etc after a meal, check back to see what you last eat). Obviously some things to consider are making sure things like alcohol and caffeine are out of your system before you breastfeed (I think the advice was if you have an alcoholic drink, you don’t want to feel tipsy, and you want to wait about 2 hours before you breastfeed… but don’t quote me on those hours). Also for babies that have occult blood (invisible blood in the baby’s stool), the first things a doctor may advise you to avoid are probably dairy and soy, because they are the most common culprits that irritate the babies developing gastro-intestinal system (this is what occurred in my experience). The Kelly Mom blog has a post that goes into food sensitivities in more detail.

For pumping, the advice was not to start until 3-4 weeks unless needed and to make sure you get a pump with a suction cup that is sized correctly to your breast; you don’t want your nipple squished on the sides. The other advice was to pump in the morning, or after a baby’s feeding (I believe about 30 minutes after is the recommendation).

For general nipple care, the advice was to try using your own breast milk around the inflamed area first. Then you can try lansinoh or coconut oil on tender area, and then if it’s really bad, use manuka honey (here’s a cream made with it), but wash it off before feeding the baby.

Other painful aspects about breastfeeding include:

  • Engorgement: this occurs when you don’t breastfeed enough so your breasts become swollen and hard. Regularly nursing helps prevent this, but if you need to you can also remove milk by hand (or what’s called expressing milk) you can use a pump. Just express until your breasts are no longer hard. Cold compresses can also be used after feeding to help bring down the swelling. To express, massage the breast tissue and then grab above and below the breast with your thumb and forefinger and press back towards your chest wall, then gently squeeze, moving your hand all around to help drain multiple areas.
  • Mastitis: this is the most common problem, and it is when your breast gets infected with bacteria, causing pain. You will probably have a fever or other flu-like symptoms as well. This can occur from blocked ducts, nipple injuries, or problems with breastfeeding. You want to call the doctor if you feel this has occurred. Also also make sure to wash your hands frequently to reduce infection risk.
  • Blocked ducts: this is caused by not relieving the breasts. A blocked duct will feel sore and tender. Try taking a warm shower and apply moist heat, and/or gently massage before breast feeding. Also try expressing after feedings if you still feel engorged.
  • Yeast infection: this will cause your nipples to be shiny, red, and painful. Yeast (also called thrush) can also grow in your baby’s mouth so look for cottage cheese looking stuff in their cheeks.

Who can you call for help? Nowadays you can call your doctor, your baby’s pediatrician, and/or some hospitals also have lactation support groups (sometimes free), or lactation consultants (usually not free) that you can call to get one-on-one help.

A little more about breastmilk. In lieu of my own little own having some kind of sickness, I’ve been looking more into breastmilk’s functions. This searching led me to this internet viral photo showing how a mom’s breastmilk changed when her infant got sick. The 2013 study mentioned in that post talks about breastmilk’s immunological function and explains how when the mom or baby get sick, the number of leukocytes (aka white blood cells) in the breastmilk drastically increases to help protect them, because leukocytes help fight disease. I find that to be such a cool example of symbiosis. I personally have also noticed that breastfeeding seems to keep both me and the baby from getting some of the sicknesses that were going around (my mom, mother-in-law, and husband each got sick after the baby was born while the two moms were visiting!).

Lastly, I also read an article by NPR addressing the breastfeeding versus formula debate for poor countries.  The major points that this article made were that formula is not a godsend for impoverished countries for the following reasons:

  • formula requires water to make it, of which clean sources are not always available
  • formula causes increased risks of diarrhea and respiratory infections, and
  • formula can cost up to 30% of a families income, and subsequently families made dilute the formula to make it last longer, which reduces the amount of nutrients the baby gets per serving.

The article also talked about how it’s weird that we are constantly trying to research the benefits of breastfeeding when it’s as natural as “breathing, chewing, hearing, passing stool”. It also went on to explain that even an underfed mom can make excellent quality milk, and as for quantity, it is also enough except in the case of severe malnutrition. The latter point is interesting to me because I hear a lot of moms, including myself with babies labeled as “failure to thrive”, which essentially means our babies aren’t gaining weight at a rate that the medical professional expects. In my case, the doctor assumed I wasn’t producing enough milk and told me to supplement with formula. It turned out that my baby drank the same amount of formula as I was producing of milk, so I wasn’t the common denominator and rather my baby just drank only tiny amounts per feed. I’m curious as to why there are many medical professionals that believe many moms can’t produce enough milk when studies may be showing the contrary.

Anyway, the article ended by saying that it is up to the mom on how they want to provide for their child, however, it is important that they have accurate information to make informed decisions. This means that we would need to reform the system so doctors are never paid to handout formula samples, and on in which moms are not incentivized by free samples to use formula.